Boolean multiplicative closures, I

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative complexity of vector valued Boolean functions

We consider the multiplicative complexity of Boolean functions with multiple bits of output, studying how large a multiplicative complexity is necessary and sufficient to provide a desired nonlinearity. For so-called ΣΠΣ circuits, we show that there is a tight connection between error correcting codes and circuits computing functions with high nonlinearity. Combining this with known coding theo...

متن کامل

Transitive Closures of Binary Relations I

Transitive closures of binary relations and relations α with the property that any two α-sequences connecting two given elements are of the same length are investigated. Vyšetřuj́ı se tranzitivńı uzávěry binárńıch relaćı a relaćı α s vlastnost́ı, že každé dvě α-posloupnosti spojuj́ıćı dané dva prvky maj́ı stejnou délku. The present short note collects a few elementary observations concerning the tr...

متن کامل

Arithmetical Functions I: Multiplicative Functions

Truth be told, this definition is a bit embarrassing. It would mean that taking any function from calculus whose domain contains [1,+∞) and restricting it to positive integer values, we get an arithmetical function. For instance, e −3x cos2 x+(17 log(x+1)) is an arithmetical function according to this definition, although it is, at best, dubious whether this function holds any significance in n...

متن کامل

The number of boolean functions with multiplicative complexity 2

Multiplicative complexity is a complexity measure defined as the minimum number of AND gates required to implement a given primitive by a circuit over the basis (AND, XOR, NOT). Implementations of ciphers with a small number of AND gates are preferred in protocols for fully homomorphic encryption, multi-party computation and zero-knowledge proofs. In 2002, Fischer and Peralta [12] showed that t...

متن کامل

A relation between additive and multiplicative complexity of Boolean functions

In the present note we prove an asymptotically tight relation between additive and multiplicative complexity of Boolean functions with respect to implementation by circuits over the basis {⊕,∧, 1}. To start, consider a problem of computation of polynomials over a semiring (K,+,×) by circuits over the arithmetic basis {+,×} ∪K. It’s a common knowledge that a polynomial of n variables with nonsca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1966

ISSN: 0386-2194

DOI: 10.3792/pja/1195521767